
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

Decentralized and Stateful Serverless Computing
on the Internet Computer Blockchain

Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye,
Ulan Degenbaev, Manu Drijvers, Islam El-Ashi, Stefan Kaestle, Roman Kashitsyn,

Maciej Kot, Yvonne-Anne Pignolet, Rostislav Rumenov, Dimitris Sarlis,
Alin Sinpalean, Alexandru Uta, Bogdan Warinschi, and

Alexandra Zapuc, DFINITY, Zurich
https://www.usenix.org/conference/atc23/presentation/arutyunyan

Decentralized and Stateful Serverless Computing
on the Internet Computer Blockchain

Maksym Arutyunyan, Andriy Berestovskyy, Adam Bratschi-Kaye, Ulan Degenbaev,
Manu Drijvers, Islam El-Ashi, Stefan Kaestle, Roman Kashitsyn, Maciej Kot,

Yvonne-Anne Pignolet, Rostislav Rumenov, Dimitris Sarlis, Alin Sinpalean, Alexandru Uta,
Bogdan Warinschi, Alexandra Zapuc

DFINITY, Zurich

Abstract
The Internet Computer (IC) is a fast and efficient decentral-
ized blockchain-based platform for the execution of general-
purpose applications in the form of smart contracts. In other
words, the IC service is the antithesis of current serverless
computing. Instead of ephemeral, stateless functions operated
by a single entity, the IC offers decentralized stateful server-
less computation over untrusted, independent datacenters. De-
velopers deploy stateful canisters that serve calls either to
end-users or other canisters. The IC programming model is
similar to serverless clouds, with applications written in mod-
ern languages such as Rust or Python, yet simpler: state is
maintained automatically, without developer intervention.

In this paper, we identify and address significant systems
challenges to enable efficient decentralized stateful serverless
computation: scalability, stateful execution through orthogo-
nal persistence, and deterministic scheduling. We describe the
design of the IC and characterize its operational data gathered
over the past 1.5 years, and its performance.

1 Introduction

Recently, the technological advances in blockchain [29], cryp-
tography [27] and consensus protocols [5, 9, 24] have enabled
more and more efficient execution of decentralized Web3 [56]
applications and smart contracts. Platforms that service such
applications are larger than ever [42], consisting of thousands
of nodes, processing billions of requests, storing large quanti-
ties of data and connecting many users. Currently, the research
community lacks a clear understanding of the operational
data of such large-scale platforms, their challenges and perfor-
mance, beyond testnet deployments with synthetic workloads
and failure patterns. In this article, we introduce the Internet
Computer (IC), its design, several of its systems challenges
and real-world operational performance data.

The IC is a decentralized platform for the execution of
general-purpose decentralized applications (dapps). Listing 1
shows an example for such a dapp. In current serverless

use ic_cdk_macros::{query, update};

use std::{cell::RefCell, collections::HashMap};

thread_local! {

static STORE: RefCell<HashMap<String, u64>> = RefCell::default();

}

#[update]

fn insert(key: String, value: u64) {

STORE.with(|store| store.borrow_mut().insert(key, value));

}

#[query]

fn lookup(key: String) -> u64 {

STORE.with(|store| *store.borrow().get(&key).unwrap_or(&0))

}

Listing 1: Functional key-value store canister. The update call
adds a key value pair; the query call gets values by keys. State
is stored on the canister heap and persisted transparently.

offerings, this application would not work without an ex-
ternal service, as functions are stateless. Instead, the IC
enables decentralized and stateful serverless com-
puting. The IC protocol [53] runs on globally distributed
servers in independent datacenters. It is highly scalable and
efficient in executing applications. The main goals of the IC
are decentralization, security and performance.

In particular, the IC aims to enable governance and evo-
lution to be controlled by different parties in a trustless and
fault-tolerant manner instead of a central entity. The IC must
also provide strong integrity and access control guarantees for
the apps running on it as well as the users interacting with it in
an efficient way. Overcoming these challenges requires novel
blockchain technology, cryptography and consensus proto-
cols [9, 27, 53]. Those advances need to be combined with a
carefully crafted system design. In this paper, we focus on
those systems-related challenges at the application execution
layer and we present our solutions and operation data.

Application developers deploy dapps (equivalent to server-
less function workflows) on the IC without the cumbersome
process of resource management, just like in serverless en-
vironments. The dapps interact with each other and with

USENIX Association 2023 USENIX Annual Technical Conference 329

end-users. Each dapp is composed of canisters, the small-
est units containing code and data, an immediate equivalent
to serverless functions. Such canisters can be combined to
build complex and powerful smart contracts. Figure 1 depicts
our protocol stack. The IC operates as a large-scale replicated
state machine. To achieve wide-range scalability, the IC nodes
are partitioned (sharded) [13, 57] into subnets, each running
its own replicated state machine.

Central to this article is the execution environment, which
ensures that the actions implemented by developers are trig-
gered efficiently and deterministically, and that consumed
resources are accounted for. For simplicity and portability,
applications are programmed in a high-level language such as
Rust, but compiled down to WebAssembly [28]. Canisters run
isolated from one another inside sandboxed processes that
execute code running under a WebAssembly virtual machine.

We identified significant execution layer systems chal-
lenges that we addressed when designing and building the
IC. First, as opposed to serverless environments [49], our
applications are long-running and (C1) stateful. The IC
enables this through an efficient mechanism to track modified
memory during canister call execution [39]. Coupled with
canister statefulness, the IC programming model is inspired
by an event-driven, actor-based model, where application pro-
grammers implement functionality that responds to messages
from users or other canisters. To simplify programmer experi-
ence the IC offers orthogonal persistence [14, 31] – the
system running the canister automatically persists the canister
memory state without users taking action toward this goal.
Therefore, sending messages to a canister is just like invoking
multiple times a serverless function, with the distinction that
function state modified by earlier calls is persisted without
the programmer explicitly saving data in external services.

Second, similarly to current scalability challenges [30, 50,
58] in serverless computing, our nodes need to run thousands
of canisters (or functions) per node. This entails achieving
intra-node (C2) scalability. This is a must to accommo-
date large subnets with tens of thousands of canisters.

Third, we emphasize (C3) determinism. Since the IC is a
large decentralized replicated state machine, all nodes must
transition to the same next state, despite potentially malicious
user input, canister code and node behavior. In a first step,
this requires strict message ordering. Moreover, determinism
is necessary in scheduling [2, 36, 44] actions that alter the
replicated state and, of course, the actual state changes must
be performed deterministically as well.

Of utmost importance for the IC is ensuring (C4) security
for application developers and end-users. More precisely, the
IC design aims to minimize the trust application developers
and end users must place in individual entities. Thus, the IC
relies on strong integrity, availability and access control guar-
antees. In particular, only valid messages will be processed
and the response can be verified as long as more than two
thirds of the nodes are honest. Canisters cannot inspect or

 Message Routing

 Peer-to-peer
 Consensus

 Execution

Subnet A Subnet CIC node
App 1

App 2

Subnet B
App N App 3

Figure 1: The protocol stack run by the nodes of the Internet
Computer. The P2P layer disseminates protocol and user-
generated messages. Message validation and ordering is es-
tablished by the consensus layer. Messages are then routed to
the execution environment and trigger efficient deterministic
(replicated) computation of the apps deployed on the IC. Apps
on different subnets can send messages to each other.

change the state of other canisters or other parts of the system.
These guarantees are achieved by carefully crafted low-level
operating systems and runtime mechanisms as well as through
the use of virtualization and sandboxing techniques.

In this paper we show that the years-old mantra saying
blockchains are slow and inefficient is coming to an end.
Addressing these challenges efficiently means the IC is, to
the best of our knowledge, the fastest and most efficient
blockchain to date, outpacing the execution speed, transac-
tion and execution costs [16] of other blockchains by orders
of magnitude, while having significantly fewer carbon emis-
sions [10]. More importantly, it enables decentralized stateful
serverless computing. We therefore omit comparing the IC
with other blockchains, but rather compare its performance
with native and non-decentralized client-server architectures,
whose performance we aim to achieve.

Having operated the IC for more than 1.5 years, we share
our experience in designing and building the IC, with an
emphasis on its systems challenges. The IC was launched in
May 2021. As of January 2023, it hosts over 230,000 canisters
for a total state of 2.5 TB (more than twice the size of the
Ethereum blockchain) running services ranging from social
media to decentralized finance. Our main contributions are:
1. We present the high-level design of the IC (Section 2).
2. We present systems challenges of the IC execution layer,

with a focus on the memory subsystem, orthogonal persis-
tence, deterministic scheduling and scalability (Section 3).

3. We showcase the performance of the IC. We introduce
high-level operational data, which we open to the pub-
lic. We present end-to-end application performance and
study in-depth the IC performance compared to native
applications. We discuss the (performance) implications
of decentralization and statefulness (Section 4).

2 The Internet Computer Design

In this section we briefly introduce the IC. For a more com-
prehensive article explaining protocol aspects in more depth
we refer the reader to the IC whitepaper [53].
Motivation. The IC aims to provide efficient multi-tenant,
general-purpose, and secure computation in a decentralized

330 2023 USENIX Annual Technical Conference USENIX Association

and geo-replicated manner tolerating Byzantine faults, offer-
ing developers a modern and easy to use programming model.
Overview. The nodes of the IC run a network of replicated
state machines [48], which interact with each other via mes-
sages. State machine replication achieves the same output
state for a service replicated on multiple machines. Each state
machine generates new states by applying deterministic state
transformations — based on the deterministic execution of
the canisters’ code provided by the app developers — to the
previous state by processing ordered input messages from
users and other canisters. The result is a new state and output
messages to canisters and users.
Subnets and nodes. The nodes (term used interchangeably
with replicas, machines, or servers) of the IC are partitioned
into subnets, each subnet providing state machine replication
for the set of canisters deployed on it.

Each node in a subnet runs all the canisters deployed in
that subnet. Subnets can be smaller or larger: we have subnets
with 80,000+ canisters and subnets with several hundreds.
Most subnets have 13 nodes that are geo-replicated across
the Americas, Europe and Asia. For applications in need of
improved security, we have higher-replication subnets, span-
ning up to 40 nodes. A subnet should continue to function
even if some replicas are faulty. The replicas running the IC
protocol are hosted on servers in geographically distributed,
independently operated data centers, bolstering security and
decentralization.

Currently, the IC nodes are homogeneous. Homogeneity
is important for system parts that are executing code running
in the replicated state machine, as otherwise, speed may be
reduced due to too many slow nodes. However, functionality
outside of the replicated state machine, such as for executing
non-replicated query calls can be scheduled proportionally to
each machine’s resource availability.

The IC supports heterogeneous subnets as long as all ma-
chines in a subnet are homogeneous. For example, certain
subnets have 13 machines while others have 40, certain sub-
nets have different disks and IO throughput and charging is
based on the number of nodes in a subnet (i.e., replication
factor). Overall horizontal scalability is achieved through the
sharding mechanism. This effectively allows the IC to scale
horizontally adding massive numbers of nodes without much
additional overhead.

2.1 Failure Model
To maximize decentralization, the IC is designed for Byzan-
tine fault-tolerance, in which faulty nodes may deviate in an
arbitrary way from the IC protocol.

In any given subnet with n≥ 3 f +1 nodes, at most f nodes
may behave in a faulty manner. This is the highest number
of failures which can be tolerated without additional assump-
tions on failures and message delivery [22, 48]. The failures
account for software bugs, power outages as well as outright

malicious behavior by colluding nodes. To limit the expo-
sure and maximize decentralization, the nodes in a subnet
are chosen in different geographical areas, jurisdictions and
node provider organizations. In the future, trusted execution
environments will further reduce the attack surface.

Traditional systems [8,11,38] often assume a weaker crash-
stop failure model and aim to be available if a subset of nodes
crash, but cannot cope with Byzantine behavior. The perfor-
mance implications of Byzantine fault tolerance over crash-
stop are acceptable for the applications deployed on the IC.

2.2 IC interface
The Internet Computer provides two distinct types of calls
(i.e., requests sent to canisters): update and query calls. We
refer to these operations interchangeably as either calls, re-
quests, or messages. The IC also provides special calls for the
canister life cycle: canister creation, canister installation and
canister upgrades. Those are special forms of update calls.

Update calls can modify canister state. They are executed
on all machines in a subnet participating in state machine
replication. The calls are ordered and validated by consensus
in a Byzantine fault-tolerant manner. This order, together
with deterministic execution of canister code and relevant
parts of the IC, provide state machine replication guarantees.
Since consensus is computation and communication heavy,
agreement and execution of update calls is done in batches to
optimize throughput. Thus, update call latency is dependent
on the time spent for consensus to reach agreement on blocks.

While update calls for different canisters may be executed
in parallel, update calls for the same canister are processed se-
quentially. The response to an update call is threshold-signed
by 2 f +1 nodes, i.e., a super-majority of the nodes created
a signature collectively, hence users can verify correctness
without having to communicate with multiple nodes.

The IC API guarantees atomicity for update calls as long as
no further calls to other canisters are made. Updates that mod-
ify local state and run local computation are always atomic.
For computation that calls into other canisters/smart contracts
2PC protocols could be implemented.

Query calls, on the other hand, do not change the canister’s
persisted state. As such, a query call may be processed directly
by a single replica without passing through consensus. This
reduces the query call latency significantly.

The correctness of query call responses from individual
machines can be verified despite the Byzantine fault tolerance
failure model with certified variables. Such variables carry
threshold signatures which are generated collectively by a
super-majority of the nodes in a subnet. Data elements that
programmers want to verify via certified variables need to
be arranged in a Merkle tree [35]. With certified variables,
elements of a canister’s state can be verified by clients even
when talking to a single IC node.

Note that the Internet Computer does not guarantee any

USENIX Association 2023 USENIX Annual Technical Conference 331

order between query calls and other calls to the system (nei-
ther query nor update). If the order of calls matters, canister
developers must use update calls and/or provide a versioning
scheme as part of the canister code.

Applications running on different subnets can call each
other by means of an asynchronous pull-based reliable com-
munication primitive on top of consensus on both the sending
as well as the receiving subnetwork.
IC Programming. Currently, developer support for appli-
cations programmed in Rust, Motoko [18], or Python [15]
exists. The IC canister code is compiled down to WebAssem-
bly, which is executed under a sandboxed virtual machine on
the IC nodes. Any language that can be compiled down to
WebAssembly could also be used. A detailed description of
WebAssembly execution is provided in Section 3. Listing 1
shows an example of a functional 15-line key-value store can-
ister implemented in Rust. It exports one update call to insert
elements in the kv-store and one query call to retrieve them.

2.3 The IC Protocol Stack
As illustrated in Figure 1, the Internet Computer Protocol
consists of four layers.
Peer-to-peer Layer. Within a subnet, nodes exchange in-
formation to achieve consensus on the replicated state and
the messages to be processed next. To this end, the peer-
to-peer layer offers a (prioritized) broadcast service to the
layers above. To conserve bandwidth, peer-to-peer relies on
an advert-based mechanism, where nodes first send a small
advert to announce they have an artifact. Other nodes can then
request the artifact if they need it, based on the details in the
advert. Peer-to-peer relies on TLS over TCP streams between
the nodes of a subnet. On top of that, it adds further reliability
with notifications for unsent messages (in case of sender-side
errors), and automatic connection re-establishment and re-
quests for recent adverts.
Consensus Layer. Incoming messages must be validated and
ordered so all replicas process them in the same order. The
IC uses a novel consensus protocol [9] briefly described here.

The protocol proceeds in rounds. The replicas grow a tree
of blocks referencing valid predecessor blocks. Their local
trees form a consistent yet sometimes locally incomplete tree
view. In each round, a pseudo-random process is used to
assign each replica a unique rank. The replica of lowest rank
is the leader of that round. When the leader is honest and
the network is synchronous, the leader will propose a block,
which the other honest nodes in the subnet will validate and
add to their local tree. If the leader is not honest or the network
is not synchronous, some other replicas of higher rank may
also propose blocks, have them validated and added to the
tree. Whenever 2 f +1 replicas report that they added exactly
one block to the tree, this block and its predecessors on the
path to the root are declared finalized and the non-finalized
parts of the tree up to this height are pruned.

Figure 2: Routing messages through the IC protocol stack.
Messages for canisters, issued by users or canisters on other
subnets, are validated and ordered by consensus. Subse-
quently, messages are put into input queues for their des-
tination canister. Messages created by canisters are put into
output queues from where they are either transferred to their
respective input queues on the same canister (bypassing con-
sensus) or sent as part of streams to their target subnet.

One can prove that this protocol provides the consensus
properties, namely safety (i.e., all replicas in fact agree on the
same ordering of inputs) and liveness (i.e., all replicas should
make steady progress). The IC consensus protocol guaran-
tees safety despite asynchrony. This means that there is no
assumption of an upper bound on the time to send information
from one node to another. For liveness short intervals with fast
message delivery are sufficient. The IC consensus protocol
degrades gracefully when some replicas are malicious.
Message Routing. Once the consensus layer orders input
messages, they are delivered to the message routing layer.
The destination canister for each message is selected and the
messages are enqueued for processing by the execution envi-
ronment. During execution, the destination canister updates
its state as part of the replicated state machine and generates
outputs handed back to the message routing layer.

The message routing layer enqueues messages in one of
multiple input queues. For each canister C running on a subnet,
there are several input queues — there is one queue specif-
ically for user-generated messages to C. Furthermore, each
other canister C′, from which C receives messages, gets its
own queue. In each round, the execution layer will consume
some of the inputs in these queues, update the replicated state
of the relevant canisters, and place outputs in various output
queues. For each canister C running on a subnet, there are
several output queues — each other canister C′, with whom C
communicates, gets its own queue. The message routing layer
will take the messages in these output queues and place them
into subnet-to-subnet streams to be processed by a crossnet
transfer protocol, whose job it is to actually transport these
messages to other subnets. This is visualized in Figure 2.

Thus, the replicated state comprises the state of the canis-
ters, as well as “system state”, including the above-mentioned
queues and streams. Thus, both the message routing and ex-
ecution layers are involved in updating and maintaining the
replicated state of a subnet. It is essential that all of this state

332 2023 USENIX Annual Technical Conference USENIX Association

is updated in a completely deterministic fashion, so that all
replicas maintain exactly the same state.

The consensus layer is decoupled from the message rout-
ing and execution layers, in the sense that only messages
from finalized blocks of the chain reach routing and execu-
tion. Temporary block tree branches are pruned before their
payloads are passed to message routing. This is in contrast to
other blockchains which execute blocks speculatively, before
ordering and validating them [46].
Execution Layer. The Execution Environment operates in
rounds, during which it takes messages from canister input
queues and executes the corresponding Wasm function with
the message as payload. Based on the input and canister state,
the execution environment updates the canister state, and
could additionally add messages to output queues. One of
the main challenges is that computation must be deterministic
for state machine replication to work.

A scheduler determines in which order messages are exe-
cuted in each round. The main goals of the scheduler are (see
Section 3.3 for a more detailed description): (1) it must be
deterministic; (2) it should distribute workloads fairly among
canisters (3) optimizing for throughput over latency.

The IC offers orthogonal persistence, an illusion given to
programs to run forever: the heap of each canister is automati-
cally preserved and restored the next time it is called. Listing 1
shows an example key-value store that illustrates how easy it
is to use orthogonal persistence. The key-value store in this
case is backed by a simple Rust HashMap stored on the Wasm
heap by means of a thread-local variable. We use a RefCell to
provide interior mutability. The example would also be possi-
ble without it, but mutating the thread-local variable would
be unsafe in that case, as the Rust compiler cannot guarantee
exclusive access to it.

3 Systems Challenges of the IC

We focus on the execution layer of the IC and discuss the
challenges C1-C4, as well as their solutions.

The IC can execute arbitrary programs. The basic computa-
tional unit in the IC is called a canister. Canister programs are
encoded in WebAssembly (Wasm) [28], a binary instruction
format for a stack-based virtual machine.

The main goal is to execute deterministically,
securely and efficiently the functions triggered by mes-
sages sent to canisters. Each canister is executing under a
long-running Wasm virtual machine whose state is persisted
over long periods of time. In terms of efficiency IC nodes are
able to sustain running tens of thousands of canisters [17].
The memory subsystem of the nodes addresses challenge C1.

The IC needs to scale up, by achieving high resource uti-
lization on individual nodes. This is important to achieve
performance comparable to native systems and to amortize
the cost of state machine replication. Essential for achieving

Figure 3: Memory faulting architecture, including heap delta
and checkpoint file. When Wasm instructions trigger page
faults, memory contents can be faulted in from the memory
checkpoint. When pages are dirtied by writes, heap deltas
are created, which invalidate page content in the checkpoint
file. Subsequent faults are served directly from heap deltas.
Periodically, heap deltas are merged into a new checkpoint.

these goals is to enable efficient execution of developer code
through Wasm code execution, solving challenge C2.

To ensure correct and deterministic state machine replica-
tion, we designed and implemented a deterministic scheduler
for the IC nodes. Our scheduler implements a deterministic
time slicing mechanism, effectively solving challenge C3.

Security is achieved at multiple layers of the IC through
trust, consensus, byzantine fault-tolerance and so forth. De-
tails about these can be found in our whitepaper [53]. At
this layer, we ensure security through operating systems and
virtualization mechanisms effectively solving challenge C4.

3.1 C1 - Statefulness - The Memory Subsystem
Currently, canisters can use up to 52 GiB of memory to be
accessed by users. Any implementation of orthogonal persis-
tence has to solve two problems: (1) How to map the persisted
memory into the Wasm memory; and (2) How to keep track
of all modifications in the Wasm memory so that they can be
persisted later. We use page protection to solve both problems.
We divide the entire address space of the Wasm memory into
4 KiB pages. All pages are initially marked as inaccessible
using the page protection flags of the OS.

The first memory access triggers a page fault, pauses the
execution, and invokes a signal handler. The signal handler
then fetches the corresponding page from persisted memory
and marks the page as read-only. Subsequent read accesses
to that page will succeed without any help from the signal
handler. The first write access will trigger another page fault,
however, and allow the signal handler to remember the page as
modified and mark the page as readable and writable. All sub-
sequent accesses to that page (both r/w) will succeed without
invoking the signal handler.

Invoking a signal handler and changing page protection
flags are expensive operations. Messages that read or write
large chunks of memory cause a storm of such operations,
degrading performance of the whole system. This can cause
severe slowdowns under heavy load.
Versioning: Heap Delta and Checkpoint Files. A canister

USENIX Association 2023 USENIX Annual Technical Conference 333

8 Bytes 1 MB 512 MB
Data Size

100

101

102

103
Ex

ec
ut

io
n

Ti
m

e
[m

s] query
optimized query
update
optimized update

Figure 4: The performance improvement given by memory
faulting optimizations (lower is better). Note the logarithmic
vertical axis. Speedups range from 1.25X to 3.5X.

executes update messages sequentially, one by one. Queries,
in contrast, can run concurrently to each other and to update
messages. The support for concurrent execution makes the
memory implementation much more challenging. Consider
that a canister is executing an update message at (blockchain)
block height H. At the same time, there could still be a pre-
vious long-running query that started earlier, at block height
H−K. This means the same canister can have multiple ver-
sions of its memory active at the same time; this is used for
the parallel execution of queries and update calls.

A naive solution to this problem would be to copy the
entire memory after each update message. That would be slow
and use too much storage. Thus, our implementation takes a
different route. It keeps track of the modified memory pages
in a persistent tree data-structure [41] called Heap Delta that
is based on Fast Mergeable Integer Maps [37]. At a regular
interval (i.e., every N rounds), there is a checkpoint event
that commits the modified pages into the checkpoint file after
cloning the file to preserve its previous version. Figure 3
shows how the Wasm memory is constructed from Heap Delta
and the checkpoint file.
Memory Faulting Optimizations. We describe below three
optimizations we designed to improve memory faulting.
♢ Optimization 1: Memory mapping the checkpoint file
pages. This reduces the memory usage by sharing the pages
between multiple calls being executed concurrently. This op-
timization also improves performance by avoiding page copy-
ing on read accesses. The number of signal handler invoca-
tions remains the same as before, so the issue of signal storms
is still open after this optimization.
♢ Optimization 2: Page tracking in Queries. All pages dirtied
by a query are discarded after execution. This means that the
signal handler does not have to keep track of modified pages
for query calls. As opposed to update calls, for queries we in-
troduced a fast path that marks pages as readable and writable
on the first access. This low-hanging fruit optimization made
queries 1.5x-2x faster on average.
♢ Optimization 3: Amortized prefetching of pages. The idea
behind the most impactful optimization is simple: to reduce
the number of page faults, we need to do more work per signal
handler invocation. Instead of fetching a single page at a time,
the signal handler tries to speculatively prefetch pages. The
right balance is required here because prefetching too many
pages may degrade performance of small messages that access

Figure 5: The execution of messages instantiates a Wasmtime
instance in a sandboxed environment. Each sandbox can run
multiple wasmtime instances. The Wasm module is compiled
to a binary running inside the VM while memory accesses are
faulted in from the memory heap deltas and checkpoint file.

only a few pages. The optimization computes the largest
contiguous range of accessed pages immediately preceding
the current page. It uses the size of the range as a hint for
prefetching more pages. This way the cost of prefetching
is amortized by previously accessed pages. As a result, the
optimization reduces the number of page faults in memory
intensive messages by an order of magnitude.

These optimizations bring substantial benefits for the per-
formance of the memory faulting component of the execution
environment. Figure 4 plots the performance optimizations we
achieved when enabling all three optimizations in comparison
with turning them off. We measured this for a memory inten-
sive benchmark which allocates 8 bytes, 1 MiB, or 512 MiB.
The optimizations allow the IC to improve its throughput for
memory-intensive workloads as depicted in the Figure and no
performance degradation was observed for other workloads.

3.2 C2 - Scalability: Wasm Execution
To process a message, the canister executes the corresponding
function in the Wasm module. Figure 5 depicts this process.
Function execution requires a Wasm instance which is a com-
bination of Wasm code and memory. One of the challenges
is that we cannot afford to keep one Wasm instance alive for
each of the canisters running in a subnet because we would
run out of memory. Instead, we construct Wasm instances
on demand for each message and dispose of them after the
message execution. Thus, the latency of message execution
depends on the instantiation time and the actual time to exe-
cute the function. Included in this instantiation time is also
the time to compile the Wasm code. One optimization we
deployed is to cache compilations of Wasm code.

For one of the most used canisters in production, the com-
pilation cache optimization reduces the P99 for running non-
replicated queries by 2 orders of magnitude. This is depicted
in Figure 6. Therefore, for our real-world example, cold-start
times are now below 10 ms for previously compiled user-code

334 2023 USENIX Annual Technical Conference USENIX Association

0 50 100 150 200
Time [ms]

Caching
No Caching

Figure 6: Compilation caching effects. P99 for running a
short (1 ms), non-replicated query on a cold started canister.

and around 230 ms when compiled for the first time. This
is an important achievement compared to major serverless
providers where cold-start times are in the order of seconds
to tens of seconds [1, 49, 51, 55]. However, compilation time
varies proportionally with the complexity of the Wasm code
being compiled. Therefore, for certain applications longer
first-time compilation times are to be expected—subsequent
calls are optimized by caching the compilations.

Section 3.1 describes how the Wasm instance manages a
canister’s memory in checkpoint files or heap deltas.
Instrumentation: Time-slicing and Accounting. Since
Wasm is Turing-complete we need a mechanism to ensure
termination of message execution. Otherwise, a faulty or mali-
cious smart contract would be able to stall the progress of the
blockchain by potentially infinitely long running messages.
As everything else in the execution layer, the point at which
we do that needs to be deterministic. However, execution
duration is not, as execution might be slightly different on
different nodes due to nondeterministic events in the system
(e.g. one machine having a page fault, but not the other one).

Instead, we instrument Wasm code to count the number of
instructions that have been executed for each message that is
being processed by the system. To reduce the performance
overhead, our compiler extension performs counting at the
basic block level instead of individual instructions. Concretely,
at the start of an execution round we initialize the global
instruction counter of the Wasm module for each canister to
the instruction limit. In each basic block of the Wasm module
we insert a snippet of code to decrement the counter by the
number of instructions in the basic block. In re-entrant blocks,
such as function and loop headers, we insert code that aborts
message execution when the counter is negative.

Another benefit of quantifying computation done via in-
struction counting is that we can deterministically charge
canisters for performed work. The canisters are charged for
the resources they are consuming, including computation,
communication and storage. For that reason, the IC needs to
account for resource usage of all canisters in the system. Two
examples for resources being accounted are memory accesses
(estimated by the number of pages read and written) as well as
CPU instructions used. Memory accesses are tracked with the
memory protection mechanisms as described in Section 3.1.

Resources also need to be accounted for when serving users
query calls. Queries are especially complex since their execu-
tion is non-replicated due to their execution on just a single
node. However, the canister still needs to be charged determin-
istically by all nodes as the balance of a canister is part of the
canister’s state which is managed by state machine replication.

This is currently an open problem we are investigating.

3.3 C3 - Deterministic Scheduling
Since we are operating a replicated state machine, it is essen-
tial that each replica processes the same inputs in the same
order. To achieve this, the replicas in a subnet run a consensus
protocol [21], which ensures that they process inputs in the
same order. If the IC code executing those messages as well
as the canister code itself is deterministic, the internal state
of each replica will evolve over time in exactly the same way,
and each replica will produce exactly the same sequence of
outputs in the absence of hardware-related problems.
Granularity. For simplicity, the scheduler works at a coarse
level, scheduling canisters instead of individual messages and
executing each canister until there are no more messages in its
queues or the system-defined instruction limit for a round is
reached. IC nodes are modern dual-socket multi-core servers.
Deterministic behavior on such a machine can be achieved
when canisters are pre-allocated to specific CPU cores at the
beginning of each round. Our current scheduler takes this
approach because it is a simple and effective design choice
which is then easily proven correct (see Appendix A).
Allocation and fairness. To ensure responsiveness under
heavy load, canisters have the option of paying upfront for
a compute allocation. Since canisters are single threaded, a
compute allocation is a fraction of one CPU core, expressed
in percentage points. Only part of a subnet’s compute ca-
pacity can be allocated, ensuring progress for canisters with
zero compute allocation, i.e. best effort canisters. Fairness is
defined as guaranteeing canister compute allocations (i.e., a
backlogged canister with compute allocation A executing at
least A full rounds out of every 100) and evenly distributing
the remaining capacity ("free compute") across all canisters.

Given a deterministic state machine with N CPU cores
(and N × 100 compute capacity), we schedule (at least) N
canisters to execute a full round: a round, in which a canister
either exhaust the instruction limit or completes the execution
of all their enqueued messages. The scheduling algorithm
uses credits accumulated across rounds as priority: an amount
of credits equal to the canister’s compute allocation plus a
uniform share of the free compute is credited to every canister
at the beginning of every round; canisters in the priority queue
are assigned round-robin to CPU cores (each of the first N
canisters are scheduled first on a CPU core), and 100 credits
are debited from each canister that executes a full round.

Our algorithm’s time complexity to compute the schedule
algorithm is linear in the number of canisters, which is accept-
able because scheduling only happens once per round (along-
side other operations that require linear time). The scheduling
algorithm has the following properties:
• Correctness wrt. compute allocation: every back-
logged canister gets a "full execution round" at least A out of
every 100 rounds, where A is the canister compute allocation.

USENIX Association 2023 USENIX Annual Technical Conference 335

• High throughput: in the absence of information regard-
ing the number of instructions required to execute each mes-
sage ahead of time (which might allow for better bin packing);
and given the constraint that canisters must be allocated to
specific cores ahead of time; the algorithm provides optimal
throughput by executing canisters allocated to each core until
the round instruction limit is reached.
• Fairness: the credits system ensures that (backlogged)
canisters with equal compute allocations get the same number
of "full execution rounds" over a long enough time period.

Appendix A defines and anlyses the scheduler formally.
Deterministic Time Slicing. The scheduler, as explained
above, although effective, is suboptimal for messages that
trigger executions of varying length. Each subnet of the IC
operates in epochs of many rounds. Messages run either to
completion or to a predefined upper limit on the number of
instructions per round. In the second case, the execution is
aborted and returns an error. In this case, the user would have
to rewrite the algorithm to make the execution of the long-
running message span multiple execution rounds. This is less
than ideal because of two reasons. First, it can artificially in-
crease round duration due to stragglers, which leads to overall
throughput loss and slowdown. Second, it can lead to signif-
icant CPU waste because a long-running execution that is
aborted due to reaching instruction limits will be re-executed.

To solve this problem, we designed a deterministic time
slicing mechanism on top of our scheduler, where each mes-
sage execution longer than a round is sliced in a number of
intervals with roughly equal numbers of instructions. This is
akin to time slicing in modern schedulers [7], although the
biggest challenge here is to enforce determinism. Time slicing
also increases the amount of intermediate state, that needs to
be kept while a message is preempted. The slices achieved
here are then scheduled as described before.

3.4 C4 - Ensuring Security
The security model of the IC aims to provide access control
and integrity of canister and system data in the presence of
malicious canisters and users. Canisters can specify a method
that accepts or rejects requests, e.g., based on caller ID, re-
source consumption etc. Only correctly signed messages are
then processed. Responses to update calls and queries for
certified variables are threshold-signed by the subnet nodes,
so clients can verify authenticity. Canisters cannot inspect or
change state of other canisters or parts of the system. This is
guaranteed by eliminating the main Wasm attack vectors.

An adversary may craft Wasm code to: (1) exploit bugs in
the Wasm engine to escape its protection mechanism; and (2)
perform side-channel attacks to obtain data from the system
or other canisters [33]. The IC protects against these attacks
using OS isolation and sandboxing. Each canister is compiled
and executed in its own sandboxed process that communicates
only with the main replica process via security-audited IPC.

2021-07
2021-09

2021-11
2022-01

2022-03
2022-05

2022-07
2022-09

2022-11
2023-01

Date

0
50000

100000
150000
200000

No
. o

f C
an

ist
er

s No. of Canisters

0
500
1000
1500
2000
2500

To
ta

l C
an

ist
er

St
at

e
[G

B]

Total Canister State

Figure 7: Total number of canisters running on the IC.

2022-01
2022-03

2022-05
2022-07

2022-09
2022-11

2023-01

Date

0

2500

5000

7500

M
es

sa
ge

 R
at

e
[m

sg
/s

]

Non-replicated Queries
Replicated Execution

Figure 8: The rate of non-replicated and replicated messages.

Sandboxes are given minimal permissions needed to execute
using object-based access control (SELinux).

In the future, hardware-based security, offering fully en-
crypted VMs with the possibility to attest remotely if the
expected VMs are running, will increase obstacles curious
and malicious node providers face.

4 The Internet Computer In Data

We present data related to the operation and performance
of the IC. We show the growth and usage patterns the IC is
experiencing, its overall performance (in comparison with
native code) and identify sources of overhead with regard to
the systems challenges presented in Section 3.

The Internet Computer Hardware. The IC currently runs
on homogeneous hardware that is hosted by independent node
providers. The chosen configuration makes use of dual-socket
AMD EPYC 7302 processors with a total of 32 physical cores
running at 3 GHz, each core having 2 hardware threads. The
IC servers make use of 503 GiB of memory. AMD chips were
chosen due to their secure encrypted virtualization feature to
enable VM encryption across VM upgrades in combination
with remote attestation.

The data presented in Sections 4.1-4.2 is gathered from
production. Experiments discussed in the rest of this section
are executed on an internal testnet that mimics subnets on the
IC. The difference to IC machines is that two IC VMs are
deployed to each host, instead of one. Testnet machines are
hence expected to be slower for concurrent workloads.

4.1 A High-level View of the IC
IC Growth (C1 + C2). We focus on the high-level opera-
tional data gathered from the IC. The usage has been steadily
increasing since launch, showing an acceleration of the num-
bers of deployed applications since the beginning of 2022.
Figure 7 depicts the number of deployed canisters over time,
as well as their overall allocated state, which reaches 2.5TB.

336 2023 USENIX Annual Technical Conference USENIX Association

2021-07
2021-09

2021-11
2022-01

2022-03
2022-05

2022-07
2022-09

2022-11
2023-01

Date

0
5

10
15
20
25
30
35
40
45

Bl
oc

k
Ra

te
 [b

lo
ck

s/
s]

Figure 9: The block rate of the IC.

2021-07
2021-09

2021-11
2022-01

2022-03
2022-05

2022-07
2022-09

2022-11
2023-01

Date

0
1
2
3
4
5
6

Ba
nd

wi
dt

h
[G

B/
s]

egress
ingress

Figure 10: Aggregated IC Nodes network traffic.

Workload Growth (C1 + C2). Together with the increase in
the deployed applications we also observe an increase in the
workload deployed on the IC. Figure 8 plots the arrival rate
of messages over time. As expected, non-replicated messages
(i.e., queries), which do not pass through consensus and do
not alter canister state are being triggered significantly more
often than replicated messages by our users. Replicated execu-
tion, which incurs the consensus overhead is used less — we
assume only for operations that need to alter application state.
An interesting observation to make here is that in February
2022, we have changed the way in which we quantify the
number of replicated messages. Whilst before this date, the
number only sums up update calls, after this date the date
adds also replicated execution that the canisters use for their
operation (e.g., periodic heartbeats). The graph shows a sig-
nificant increase in the number of replicated messages after
February 2022. We note here that it is common practice that
for operational systems, metrics sometimes change meaning
over time as the systems itself is refined and continuously
evolving. The significant increase in replicated execution in
Dec 2022 is due to the launch of a popular application, while
the later drop corresponds to a change in the call pattern of
the same application.
IC Scaling Out (C2). Over time, the IC has increased its
capacity to sustain increased workloads and achieve decen-
tralization. Evidence to sustain the scaling out of the IC is
given by examining the block rate – the number of blocks
generated by the consensus layer. Figure 9 plots these data,
showing an increase of 57% since launch.

Similar evidence to sustain growth of the IC in terms of
higher workload demands is represented by the increased net-
work bandwidth used to exchange messages between nodes.
Figure 10 depicts the aggregated bandwidth of traffic gener-
ated: since launch, the traffic generated between the nodes has
increased from around 250 MB/s to about 3 GB/s, over an or-
der of magnitude increase over a period of a year. The amount
of ingress and egress traffic is very similar, as expected.

0 5 10 15
Latency [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Replicated Message
Query

(a) OpenChat Subnet.

0 2 4 6
Latency [s]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Replicated Message
Query

(b) DSCVR Subnet.

Figure 11: The time queries or replicated messages take in
the execution layer, without consensus overhead.

0 2000 4000 6000
Million Instructions

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Replicated Message
Query

(a) OpenChat Subnet.

0 2000 4000 6000 8000
Million Instructions

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Replicated Message
Query

(b) DSCVR Subnet.

Figure 12: The number of instructions spent for executing
queries or replicated messages.

4.2 The IC Performance
The IC has attracted the developers of several large appli-
cations, for example: OpenChat (a decentralized chat appli-
cation), DSCVR (decentralized social news aggregator), and
distrikt (a decentralized professional social media platform).
These applications have added a significant increase in work-
load complexity for the IC. We present an in-depth analysis
of the metrics of the subnet that runs the OpenChat canisters.
We focus mostly on data related to the systems challenges
described in Section 3.

The subnet hosting the OpenChat application is composed
of 13 replica nodes distributed geographically (in North Amer-
ica, Europe and East Asia). The subnet hosts 80,000 canisters.
Replicated vs. Non-Replicated Execution. (C1-C3) First,
we assess the duration of non-replicated queries in compari-
son with replicated update calls in Figure 11. We compare the
data in the OpenChat subnet with the data coming from the
subnet running DSCVR (and other applications). Note that
this comparison does not include the overhead of the P2P, con-
sensus and messaging layer, but only measures the time spent
in the Execution layer. By analyzing the data in Figure 11
we conclude that queries run longer for the OpenChat subnet,
while updates dominate on the DSCVR subnet. Figure 12
plots the number of Wasm instructions for queries compared
to replicated messages. The average number of instructions
executed for queries is significantly higher than for replicated
messages for OpenChat, leading to longer executions. On the
contrary, on the DSCVR subnet the behavior is the exact oppo-
site. This shows that the IC runs a diverse set of applications,
with varied needs and characteristics.
Memory Overhead (C1 + C2). The heap delta is used in-
between checkpoints to keep track of modified memory pages.
This data structure can affect the subnets’ ability to scale up

USENIX Association 2023 USENIX Annual Technical Conference 337

https://oc.app/
https://dscvr.one/
https://az5sd-cqaaa-aaaae-aaarq-cai.ic0.app/
https://dashboard.internetcomputer.org/subnet/eq6en-6jqla-fbu5s-daskr-h6hx2-376n5-iqabl-qgrng-gfqmv-n3yjr-mqe

2022-05
2022-06

2022-07
2022-08

2022-09
2022-10

2022-11
2022-12

2023-01

Date

0
50

100
150
200
250
300
350

He
ap

 D
el

ta
 [G

B]

Figure 13: Heap delta for an IC subnet over time.

2022-05
2022-06

2022-07
2022-08

2022-09
2022-10

2022-11
2022-12

2023-01

Date

0.25

0.50

0.75

Sc
he

du
lin

g
Ov

er
he

ad
 [s

]

Figure 14: Scheduling overhead for an IC subnet over time.

to many concurrent canisters as tracking modifications incurs
overhead. Figure 13 shows how the heap delta for all canisters
on OpenChat subnet evolves over time. The data shows that on
average the heap delta is below 5 GB, but more recently, since
November 2022 it has significantly increased, up to 350 GB.
This shows a large increase in OpenChat usage, aggregated for
more than 80,000 canisters. On subnets with fewer canisters
heap deltas are typically smaller.
Scheduling Overhead (C3). When scheduling replicated
messages the same ordering has to be ensured on all replicas
so that determinism is guaranteed. Deciding which message
gets scheduled for execution and at what time is a costly
operation that can affect scalability. We plot the scheduling
overhead, i.e., the time to compute the schedule for one round,
in the OpenChat subnet in Figure 14. The immediate con-
clusion is that this overhead is in the order of hundreds of
milliseconds per round for this subnet. An interesting point
is the overhead reduction which can be observed around the
end of May 2022. This is attributed to an optimization related
to the scheduling process, namely checking if a canister has
messages to be run. We checked the scheduling overhead
for subnets with smaller numbers of canisters as well. Our
conclusion is that this overhead is proportionally smaller (as
the overhead complexity is O(N logN) for N canisters). Simi-
larly to the heap delta observation, the scheduling overhead
increased significantly since November 2022. This is also
because the number of users (and canisters) for OpenChat has
significantly increased, leading to many more messages being
scheduled for execution in this subnet. We investigate ways
to reduce this overhead to support efficient scheduling with
larger workloads.

4.3 The IC Virtualization Stack
We quantify the impact of the IC virtualization. In Section 3
we described how user code is executed. In short, user code
is compiled to Wasm, which gets instrumented and compiled
to a binary that gets executed inside a sandbox. To achieve
orthogonal persistence and stateful execution we keep track

of memory writes in a persistent data structure from which the
Wasm VM is faulting in its pages. This indirection introduces
a non-trivial overhead. We quantify this overhead for two
types of workloads: compute- and memory-intensive. Each
of these workloads stress different resources of the stack.

Compute Intensive Workload (C2). We implemented a
workload that calculates prime numbers up to a given integer
number. This is a single threaded workload, which we wrote
in Rust and deployed on the IC. We ran the same workload
(identical Rust code) on an IC machine natively (compiled to
an x86 binary), without the entire virtualization stack. Further-
more, we ran the same Rust code on one of the top-3 serverless
providers. Experiments in the IC have been measured from
within the Execution Environment and hence do not contain
network latency or the cost of other parts of the IC stack. We
provide similar data for the serverless provider and take the
latency from the provider’s dashboard. The experimental data
is presented in Table 1. The overhead is computed against the
native execution (not against the serverless provider).

First, the Internet Computer performance compared to na-
tive execution is good for longer-running workloads consid-
ering the extra features that the IC execution environment
provides: sandboxing, accounting and tracking changes. Sec-
ond, we emphasize that the IC performance is in the same
order of magnitude with one of the top-3 serverless providers.
Considering the extra operations that the IC does to offer
its users decentralization, security etc., we deem these per-
formance data encouraging, especially taking into account
the fact that the serverless execution is faster than native ex-
ecution in our case. This directly implies that the hardware
running the serverless platform is very likely faster than the
hardware we described in Section 4.

Memory Intensive Workload (C1). We performed a simi-
lar experiment with a memory intensive workload. Here, mem-
ory is accessed sequentially in strides of 8 bytes. The totally
allocated memory is 1 GB. In this experiment we only com-
pare against a native execution because all current serverless
platforms are not stateful. Therefore, the serverless functions
access memory directly (i.e., without any faulting architec-
ture, persistence, versioning) through either microVMs [1] or
containers [43]. A more direct comparison would involve a
serverless function that stores its state in a storage environ-

n IC [ms] Native [ms] Serverless [ms] Slowdown
IC / native

0 1.40 0.02 3.53 70 X
100 1.43 0.03 1.93 47 X

1,000 2.35 0.94 2.94 2.5 X

10,000 41.54 33.85 19.65 1.22 X
50,000 718.26 610.73 347.54 1.17 X

Table 1: Median computation time for a compute intensive
workload running on the IC, native execution and running on
a serverless provider (average for serverless due to lack of
raw data) over 30 executions. The workload identifies primes
in the first n integers.

338 2023 USENIX Annual Technical Conference USENIX Association

Operation Data Size
[Bytes] IC [ms] Native [ms] Slowdown

IC / native

Read 50,000 2.15 0.02 107 X
Read 5,000,000 26.36 1.83 14.2 X
Read 50,000,000 195.52 18.27 10.7 X

Write 50,000 2.28 0.02 114 X
Write 5,000,000 33.79 2.14 15.8 X
Write 50,000,000 277.36 19.13 14.5 X

Table 2: Median computation time over 30 executions of a
memory intensive benchmark performing strided reads/writes
of different sizes on the IC and native execution.

ment [32], but this is outside the scope of this article.
We therefore compare the execution time of executing the

benchmark compiled to a native x86 binary on one of the IC
node to the time of executing the same benchmark as canister
code. Table 2 summarizes our findings. For workloads that
touch up to 50 MiB of data, the overhead of running this
benchmark on the IC is approximately 10 X to 15 X. Lower
amounts of data touched incur larger slowdowns, with smaller
data giving the largest slowdown.

Even though the slowdown compared to native execution
seems large, we remind the reader that a rather deep virtualiza-
tion stack is involved in memory operations. Further, the IC
needs to account for resource consumption and track memory
writes, which the native version does not do. Finally, update
calls pass through consensus and the entire IC stack, therefore
offering the users all the Internet Computer benefits: decen-
tralization, security, and tamper-proof execution. Moreover,
we remind the reader that the IC is orders of magnitude faster
and more efficient than other blockchains. We are further
working on improving the memory faulting layer using write
barriers [6] or userfaultfd [39] so that in the future we can
reach our goal of (close-to-)native performance.
The Cost of Decentralization and Statefulness (C1-C4).
One of the overarching goals of the IC is to offer levels of
performance as close as possible to native and traditional
client-server architecture performance. With regard to user-
perceived overhead, the factors contributing most are the con-
sensus protocol, the networking, and the crypto primitives,
as well as memory faulting. At a macro level, this overhead
can be observed by re-interpreting Figures 9 and 10. All the
replication protocol-related mechanisms leads to network traf-
fic (e.g., a few MB per machine per second, see Figure 10,
considering that at the moment of writing the IC runs on over
500 machines) and computational overhead for the creation
and validation of blocks and the messages contained therein.
This overhead is not crippling the operation of the IC and its
benefits significantly outweigh its downsides.

We ran many memory-intensive update calls in one of our
testing and benchmarking subnets. Memory-intensive updates
especially stress the entire system stack because they: (i) mod-
ify significant amounts of the canister state; (ii) need repli-
cated execution; (iii) require consensus for ordering. There-
fore, we quantify the overhead of system components by run-
ning Linux perf. Figure 15 is an instance of quantifying

Figure 15: Decentralization and statefulness overheads when
several memory-intensive update calls are made. Data
presented as flame graphs [26].

such overhead. We observe that the actual workload takes
approximately 50% of the used CPU time (not all the CPU
capacity is used). A large fraction of the overhead can be
attributed to the consensus and P2P protocol, networking or
crypto primitives stack, together they account for roughly
20% of the CPU time. Another sizeable CPU time consump-
tion is due to the memory faulting subsystem (9%) and the
execution management stack (11%). The latter involves all
processing related to canister administration, Wasm instru-
mentation, communication with sandboxes.

4.4 End-to-end Performance (C1-C4)
We quantify the end-to-end performance of our subnets using
the default subnet size of 13 nodes. Note that for enhanced
security guarantees (e.g., tolerating more malicious nodes) the
IC hosts even larger subnets (i.e., 40 machines). All subnets
are geo-replicated, i.e., are composed of machines running on
multiple continents – the Americas, Europe, Asia. Our results
are depicted in Table 3.

In contrast to other experiments we execute requests with
insignificant execution overhead, so we can safely attribute
the latency overhead to other layers. A geo-replicated subnet
is able to run∼78K queries per second with a latency of 50ms-
200ms, given by differences in geographic location of client
and targeted IC node. Since no coordination among nodes
is needed for query execution, we can safely attribute this
latency to the networking layers. In terms of updates (stateful
and replicated execution), a geo-replicated subnet is able to
serve 950 updates per second for a latency of 1-4s (which

Op Throughput
(ops / s)

Latency
(s) Overheads

Query 78,000 0.05-0.2 Networking

Update 950 1-4

Networking,
Consensus,
Replicated
Execution,

Statefulness

Table 3: End-to-End performance for the two operations sup-
ported by the IC.

USENIX Association 2023 USENIX Annual Technical Conference 339

includes networking, consensus and replication overheads).
Note that this latency is comparable to the top-3 serverless
platforms cold starts [54].

5 Related Work

The IC builds on fruitful years of research at many levels:
from consensus, to peer-to-peer networking, cryptographic
protocols, blockchain, and operating systems. We limit our
discussion to blockchain-related technology and large-scale
systems making use of it, and the value of opening up and
discussing data from large-scale operational systems.
Blockchain Execution Environments. It has become a
mantra that blockchains are slow. Just like for the IC, others
have investigated ways in which computations and transac-
tions running atop blockchains can be sped up. These are
related to either speeding up consensus [12, 52], using soft-
ware transactional memory [25,46,47], enforcing determinism
and ordering [34, 52], or optimizing execution layers [2]. The
performance evaluation in these works relies on synthetic
workloads in test environments. To the best of our knowledge,
this paper is the first to report on the performance of the exe-
cution environment of a real-world blockchain deployment.
Operational Systems and Data. Next to the more tradi-
tional workloads, such as high-performance scientific com-
puting [20], analytics [4], cluster workloads [45], recently
data centers started providing Blockchain-as-a-service of-
ferings [23]. As Amvrosiadis et al. point out [3] data set
diversity is key to understand the characteristics of work-
loads and to tailor new resource management schemes. The
community recognizes and emphasizes the need of analyzing
operational systems, such as the Microsoft Serverless plat-
form [49], CloudLab [19], or the evolution of the Google data
center network [40]. We believe our article adds significant
data and insight on the design, operation and growth of sys-
tems that offer general-purpose computation capabilities on
top of blockchain platforms.

6 Conclusion

The Internet Computer overcomes traditional blockchain
limitations with respect to speed, storage costs, and computa-
tional capacity. We demonstrated how the novel design of
the IC, coupled with solving low-level systems challenges
enables decentralized stateful serverless. In particular, we
presented an in-depth description of the execution layer of the
IC followed by an evaluation of operational and performance
data over real-world workloads as well as compute and
memory-intensive benchmarks.

The IC code and data can be found here:
• IC code: https://github.com/dfinity/ic
• Dashboard: https://dashboard.internetcomputer.org/
• Dataset API: https://ic-api.internetcomputer.org/api

References
[1] AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI, A., NEUGE-

BAUER, R., PIWONKA, P., AND POPA, D.-M. Firecracker:
Lightweight virtualization for serverless applications. In 17th USENIX
symposium on networked systems design and implementation (NSDI
20) (2020), pp. 419–434.

[2] AMIRI, M. J., AGRAWAL, D., AND EL ABBADI, A. Parblockchain:
Leveraging transaction parallelism in permissioned blockchain systems.
In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS) (2019), IEEE, pp. 1337–1347.

[3] AMVROSIADIS, G., PARK, J. W., GANGER, G. R., GIBSON, G. A.,
BASEMAN, E., AND DEBARDELEBEN, N. On the diversity of cluster
workloads and its impact on research results. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18) (2018), pp. 533–546.

[4] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y., LIU, D., BRADLEY,
J. K., MENG, X., KAFTAN, T., FRANKLIN, M. J., GHODSI, A., ET AL.
Spark sql: Relational data processing in spark. In Proceedings of the
2015 ACM SIGMOD international conference on management of data
(2015), pp. 1383–1394.

[5] BANO, S., SONNINO, A., AL-BASSAM, M., AZOUVI, S., MCCORRY,
P., MEIKLEJOHN, S., AND DANEZIS, G. Sok: Consensus in the age of
blockchains. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies (2019), pp. 183–198.

[6] BLACKBURN, S. M., AND HOSKING, A. L. Barriers: Friend or foe?
In Proceedings of the 4th international symposium on Memory man-
agement (2004), pp. 143–151.

[7] BOURON, J., CHEVALLEY, S., LEPERS, B., ZWAENEPOEL, W.,
GOUICEM, R., LAWALL, J., MULLER, G., AND SOPENA, J. The battle
of the schedulers:{FreeBSD}{ULE} vs. linux {CFS}. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18) (2018), pp. 85–96.

[8] BROOKER, M., CHEN, T., AND PING, F. Millions of tiny databases. In
Proceedings of the 17th Usenix Conference on Networked Systems De-
sign and Implementation (USA, 2020), NSDI’20, USENIX Association,
p. 463–478.

[9] CAMENISCH, J., DRIJVERS, M., HANKE, T., PIGNOLET, Y.-A.,
SHOUP, V., AND WILLIAMS, D. Internet computer consensus. In
Proceedings of the 2022 ACM Symposium on Principles of Distributed
Computing (2022), pp. 81–91.

[10] CARBON CROWD. CO2 emissions assessment of the inter-
net computer. https://wiki.internetcomputer.org/wiki/L1_
comparison, 2022.

[11] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN, S.,
RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,
WANG, R., AND WOODFORD, D. Spanner: Google’s globally dis-
tributed database. ACM Trans. Comput. Syst. 31, 3 (aug 2013).

[12] DANEZIS, G., KOKORIS-KOGIAS, L., SONNINO, A., AND SPIEGEL-
MAN, A. Narwhal and tusk: a dag-based mempool and efficient bft
consensus. In Proceedings of the Seventeenth European Conference on
Computer Systems (2022), pp. 34–50.

[13] DANG, H., DINH, T. T. A., LOGHIN, D., CHANG, E.-C., LIN, Q.,
AND OOI, B. C. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 international conference on management of
data (2019), pp. 123–140.

340 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/dfinity/ic
https://dashboard.internetcomputer.org/
https://ic-api.internetcomputer.org/api
https://wiki.internetcomputer.org/wiki/L1_comparison
https://wiki.internetcomputer.org/wiki/L1_comparison

[14] DEARLE, A., KIRBY, G. N., AND MORRISON, R. Orthogonal per-
sistence revisited. In International Conference on Object Databases
(2009), Springer, pp. 1–22.

[15] DEMERGENT LABS. Python cdk for the internet computer. https:
//github.com/demergent-labs/kybra, 2023.

[16] DFINITY FOUNDATION. Comparison between the internet computer
and other l1 blockchains. https://wiki.internetcomputer.org/
wiki/L1_comparison, 2022.

[17] DFINITY FOUNDATION. The internet computer subnets. https:
//dashboard.internetcomputer.org/subnets, 2023.

[18] DFINITY FOUNDATION. The motoko programming lan-
guage. https://internetcomputer.org/docs/current/
developer-docs/build/cdks/motoko-dfinity/motoko/, 2023.

[19] DUPLYAKIN, D., RICCI, R., MARICQ, A., WONG, G., DUERIG, J.,
EIDE, E., STOLLER, L., HIBLER, M., JOHNSON, D., WEBB, K.,
ET AL. The design and operation of {CloudLab}. In 2019 USENIX
annual technical conference (USENIX ATC 19) (2019), pp. 1–14.

[20] FEITELSON, D. G., TSAFRIR, D., AND KRAKOV, D. Experience
with using the parallel workloads archive. Journal of Parallel and
Distributed Computing 74, 10 (2014), 2967–2982.

[21] FISCHER, M. J. The consensus problem in unreliable distributed
systems (A brief survey). In Fundamentals of Computation Theory,
Proceedings of the 1983 International FCT-Conference, Borgholm, Swe-
den, August 21-27, 1983 (1983), vol. 158 of Lecture Notes in Computer
Science, Springer, pp. 127–140.

[22] FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. Impossibility
of distributed consensus with one faulty process. J. ACM 32, 2 (1985),
374–382.

[23] GAI, K., GUO, J., ZHU, L., AND YU, S. Blockchain meets cloud
computing: A survey. IEEE Communications Surveys & Tutorials 22,
3 (2020), 2009–2030.

[24] GARAY, J., AND KIAYIAS, A. Sok: A consensus taxonomy in the
blockchain era. In Cryptographers’ track at the RSA conference (2020),
Springer, pp. 284–318.

[25] GELASHVILI, R., SPIEGELMAN, A., XIANG, Z., DANEZIS, G., LI, Z.,
XIA, Y., ZHOU, R., AND MALKHI, D. Block-stm: Scaling blockchain
execution by turning ordering curse to a performance blessing. arXiv
preprint arXiv:2203.06871 (2022).

[26] GREGG, B. The flame graph. Communications of the ACM 59, 6
(2016), 48–57.

[27] GROTH, J., AND SHOUP, V. On the security of ecdsa with additive
key derivation and presignatures. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques (2022),
Springer, pp. 365–396.

[28] HAAS, A., ROSSBERG, A., SCHUFF, D. L., TITZER, B. L., HOL-
MAN, M., GOHMAN, D., WAGNER, L., ZAKAI, A., AND BASTIEN, J.
Bringing the web up to speed with webassembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (2017), pp. 185–200.

[29] HUANG, H., KONG, W., ZHOU, S., ZHENG, Z., AND GUO, S. A
survey of state-of-the-art on blockchains: Theories, modelings, and
tools. ACM Computing Surveys (CSUR) 54, 2 (2021), 1–42.

[30] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless computing with
shared logs. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (2021), pp. 691–707.

[31] JORDAN, M. J., AND ATKINSON, M. P. Orthogonal persistence for
java—a mid-term report. Morrison et al.[161] (1999), 335–352.

[32] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEFFERLE, J.,
AND KOZYRAKIS, C. Pocket: Elastic ephemeral storage for serverless
analytics. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (2018), pp. 427–444.

[33] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T., ET AL.
Spectre attacks: Exploiting speculative execution. Communications of
the ACM 63, 7 (2020), 93–101.

[34] MEHRARA, M., HAO, J., HSU, P.-C., AND MAHLKE, S. Paralleliz-
ing sequential applications on commodity hardware using a low-cost
software transactional memory. ACM Sigplan Notices 44, 6 (2009),
166–176.

[35] MERKLE, R. C. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology (Berlin, Heidelberg,
1987), CRYPTO ’87, Springer-Verlag, p. 369–378.

[36] NGUYEN, D., LENHARTH, A., AND PINGALI, K. Deterministic galois:
On-demand, portable and parameterless. ACM SIGPLAN Notices 49, 4
(2014), 499–512.

[37] OKASAKI, C., AND GILL, A. Fast mergeable integer maps. In Work-
shop on ML (1998), pp. 77–86.

[38] ONGARO, D., AND OUSTERHOUT, J. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Confer-
ence on USENIX Annual Technical Conference (USA, 2014), USENIX
ATC’14, USENIX Association, p. 305–320.

[39] PENG, I., MCFADDEN, M., GREEN, E., IWABUCHI, K., WU, K., LI,
D., PEARCE, R., AND GOKHALE, M. Umap: Enabling application-
driven optimizations for page management. In 2019 IEEE/ACM Work-
shop on Memory Centric High Performance Computing (MCHPC)
(2019), IEEE, pp. 71–78.

[40] POUTIEVSKI, L., MASHAYEKHI, O., ONG, J., SINGH, A., TARIQ,
M., WANG, R., ZHANG, J., BEAUREGARD, V., CONNER, P., GRIB-
BLE, S., ET AL. Jupiter evolving: transforming google’s datacenter
network via optical circuit switches and software-defined network-
ing. In Proceedings of the ACM SIGCOMM 2022 Conference (2022),
pp. 66–85.

[41] PROKOPEC, A., BRONSON, N. G., BAGWELL, P., AND ODERSKY, M.
Concurrent tries with efficient non-blocking snapshots. In Proceedings
of the 17th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (2012), pp. 151–160.

[42] PSARAS, Y., AND DIAS, D. The interplanetary file system and the
filecoin network. In 2020 50th Annual IEEE-IFIP International Con-
ference on Dependable Systems and Networks-Supplemental Volume
(DSN-S) (2020), IEEE, pp. 80–80.

[43] RANDAZZO, A., AND TINNIRELLO, I. Kata containers: An emerging
architecture for enabling mec services in fast and secure way. In
2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (2019), IEEE, pp. 209–214.

[44] RAVICHANDRAN, K., GAVRILOVSKA, A., AND PANDE, S. Destm:
harnessing determinism in stms for application development. In Pro-
ceedings of the 23rd international conference on Parallel architectures
and compilation (2014), pp. 213–224.

[45] REISS, C., WILKES, J., AND HELLERSTEIN, J. L. Google cluster-
usage traces: format+ schema. Google Inc., White Paper 1 (2011).

[46] RUAN, P., LOGHIN, D., TA, Q.-T., ZHANG, M., CHEN, G., AND
OOI, B. C. A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (2020), pp. 543–557.

[47] SAAD, M. M., KISHI, M. J., JING, S., HANS, S., AND PALMIERI,
R. Processing transactions in a predefined order. In Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming
(2019), pp. 120–132.

[48] SCHNEIDER, F. B. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Comput. Surv. 22, 4 (1990),
299–319.

USENIX Association 2023 USENIX Annual Technical Conference 341

https://github.com/demergent-labs/kybra
https://github.com/demergent-labs/kybra
https://wiki.internetcomputer.org/wiki/L1_comparison
https://wiki.internetcomputer.org/wiki/L1_comparison
https://dashboard.internetcomputer.org/subnets
https://dashboard.internetcomputer.org/subnets
https://internetcomputer.org/docs/current/developer-docs/build/cdks/motoko-dfinity/motoko/
https://internetcomputer.org/docs/current/developer-docs/build/cdks/motoko-dfinity/motoko/

[49] SHAHRAD, M., FONSECA, R., GOIRI, Í., CHAUDHRY, G., BATUM, P.,
COOKE, J., LAUREANO, E., TRESNESS, C., RUSSINOVICH, M., AND
BIANCHINI, R. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20) (2020), pp. 205–218.

[50] SHILLAKER, S., AND PIETZUCH, P. Faasm: Lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20) (2020), pp. 419–433.

[51] SILVA, P., FIREMAN, D., AND PEREIRA, T. E. Prebaking functions to
warm the serverless cold start. In Proceedings of the 21st International
Middleware Conference (2020), pp. 1–13.

[52] SURI-PAYER, F., BURKE, M., WANG, Z., ZHANG, Y., ALVISI, L.,
AND CROOKS, N. Basil: Breaking up bft with acid (transactions).
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (2021), pp. 1–17.

[53] THE DFINITY TEAM. The Internet Computer for Geeks. Cryptology
ePrint Archive, Paper 2022/087. https://eprint.iacr.org/2022/
087.

[54] USTIUGOV, D., AMARIUCAI, T., AND GROT, B. Analyzing tail latency
in serverless clouds with stellar. In 2021 IEEE International Symposium
on Workload Characterization (IISWC) (2021), IEEE, pp. 51–62.

[55] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND SWIFT, M.
Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18) (2018), pp. 133–146.

[56] WEYL, E. G., OHLHAVER, P., AND BUTERIN, V. Decentralized
society: Finding web3’s soul. Available at SSRN 4105763 (2022).

[57] ZAMANI, M., MOVAHEDI, M., AND RAYKOVA, M. Rapidchain: Scal-
ing blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security (2018),
pp. 931–948.

[58] ZHANG, T., XIE, D., LI, F., AND STUTSMAN, R. Narrowing the gap
between serverless and its state with storage functions. In Proceedings
of the ACM Symposium on Cloud Computing (2019), pp. 1–12.

A Appendix – Scheduler Analysis

Notation For a vector v we write v j for the j’th entry in v.
By overloading notation, we write e j for the unit vector with
1 on the j’th position and 0 everywhere else. We write |v| for
∑ j v j – for vectors with positive entries |·| corresponds to |·|1.

For a set S we write |S| for its size. For a real number x we
write |x| for its absolute value. We write x← a for assigning
to variable x value a. If S is a set, we write x ← S for a
deterministic way of assigning a value s ∈ S to variable x.

Problem statement An allocation for t canisters is repre-
sented by a vector a=(a1,a2, . . . ,at), a vector in {1,2, . . . ,v}t

for some v. Given an allocation vector a = (a1,a2, . . . ,at),
we define a deterministic (stateful) scheduling algorithm
which, for each round k ∈ N outputs some index sch(k) ∈
{1,2, . . . , t}, or equivalently, some unit vector e j∗ (with j∗ ∈
{1,2, . . . , t})1.

Intuitively, a good scheduler approximates the allocation
vector well, i.e. for large enough k it outputs j a number of
times proportional to its allocation. We formalize this intuition
as follows.

1To simplify notation, we ignore that the scheduler is stateful

For each k ∈N and i∈ {1,2, . . . , t} let idxs(k, i) = { j | j≤
k,sch(j) = i} the set of indexes j such that i was scheduled
in round j (i.e. s(j) = i). For a good scheduler, the quantity∣∣∣∣ |idxs(k, i)|

k
− ai

|a|

∣∣∣∣
is “small" for all large enough k. Informally, the above relation
states that the scheduler has allocated k rounds proportional
to the desired allocation.

Scheduler description Given an allocation vector a, we
define the following scheduler. The state of the scheduler at
step k is given by vectors d(k),p(k),s(k) defined as follows2.

The initial state is d(0) = s(0) = (0,0, . . . ,0). For k ≥ 1
define:

p(k) = d(k−1)+a
j∗←{ j | p j(k)≥ pl(k), ∀l ∈ {1,2, . . . , t}}
s(k) = s(k−1)+ e j∗ ,
d(k) = p(k)− e j∗ · |a|
sch(k) = e j∗

Analysis The following lemma states some invariants that
hold throughout the execution of the scheduler.

Lemma A.1. For any k ∈ N it holds that:

|d(k)|= 0

For any k ∈ N∗ it holds that:

|p|= |a|

Proof. We prove the invariant holds true for d by induction
on k. The invariant for p follows immediately.

Base case For k = 0 we have that d(0) = (0,0, . . . ,0) so the
invariant holds trivially.

Induction step By definition,

d(k) = d(k−1)+a− e j∗ · |a|

for some j∗ ∈ {1,2, . . . , t}. We then get that:

|d(k)|=
∣∣d(k−1)+a− e j∗

∣∣= 0+ |a|− |a|= 0

The following lemma establishes a relation between d and
s. Informally, the relation says that s(k) is an approximation
of k · a

|a| – the quality of the approximation is given by the
entries in d.

Lemma A.2. For any k ∈ N it holds that:

d(k) = k ·a− s(k) · |a|

Proof. Proof by induction.
2In fact p is explicitly maintained only for convenience of analysis; it can

be reconstructed from d,s and a

342 2023 USENIX Annual Technical Conference USENIX Association

https://eprint.iacr.org/2022/087
https://eprint.iacr.org/2022/087

Base case For k = 0 we have that d(k) = s(k) = (0,0, . . . ,0)
so the equality holds trivially.

Induction step Assume it holds for k−1, i.e. d(k−1) =
(k− 1) · a− s(k− 1) · |a|. By definition, d(k) = d(k− 1) +
a− e j∗ · |a| for some j∗. From the induction step, this can be
rewritten as

d(k) = (k−1) ·a− s(k−1) · |a|+a− e j∗ · |a|
= k ·a− s(k) · |a|

The following lemma establishes a lower bound on the
the debt which processes can accumulate throughout their
lifetime.

Lemma A.3. For any k ∈N and j ∈ {1,2, . . . , t} it holds that:

1−|a| ≤ d j(k)

Proof. Proof by induction.

Inductive step The inequality trivially holds for j ̸= j∗

since by definition (and the induction hypothesis):

d j(k) = d j(k−1)+a j ≥ d j(k−1)≥ 1−|a|

To prove the bound for j∗, notice that by Lemma A.1, for
any k ∈ N:

t

∑
j=1

d j(k)+a j(k) = |a|

Since j∗ is such that d j∗(k−1)+a j∗ ≥ d j(k−1)+a j for all
j and t ≤ |a|, it holds that

d j∗(k−1)+a j∗ ≥
|a|
t
≥ 1.

So, we have that

d j∗(k) = d j∗(k−1)+a j∗ − (e j∗ · |a|) j∗

≥ 1−|a|

Finally, the following theorem establishes that in |a| rounds,
job i is scheduled ai times.

Theorem A.4.

s(|a|) = a

Proof. By Lemma A.2, it holds that:

d(|a|) = |a| ·a− s(|a|) · |a|= (a− s(|a|)) · |a|

Since d j∗ ≥ 1−|a| (by Lemma A.3) and d j(|a|) is an inte-
ger divisible by |a| (by the above equality) then, it holds that
d j(k) ≥ 0. Since |d(|a|)| = 0 then d(|a|) = (0,0, . . . ,0) and
the desired equality follows.

USENIX Association 2023 USENIX Annual Technical Conference 343

	Introduction
	The Internet Computer Design
	Failure Model
	IC interface
	The IC Protocol Stack

	Systems Challenges of the IC
	C1 - Statefulness - The Memory Subsystem
	C2 - Scalability: Wasm Execution
	C3 - Deterministic Scheduling
	C4 - Ensuring Security

	The Internet Computer In Data
	A High-level View of the IC
	The IC Performance
	The IC Virtualization Stack
	End-to-end Performance (C1-C4)

	Related Work
	Conclusion
	Appendix – Scheduler Analysis

