
The Internet Computer for
Systems Researchers
Stefan Kaestle
Ulan Degenbaev, Adam Bratschi-Kaye, Andriy Berestovskyy

We are hiring: dfinity.org/careers June 2022

1) What is the IC?

2) Interesting Systems problems

3) Numbers

4) Q&A

Agenda

DFINITY Onboarding DeckWhat is the Internet Computer?

DFINITY Onboarding DeckWhat is the Internet Computer?

Vision:
Platform to run any computation
in a decentralized and secure manner

What’s different about the Internet Computer

● Byzantine fault tolerance
○ Up to f out of 3f + 1 malicious nodes
○ Individual nodes cannot be trusted

● Geo replicated

● Decentralized
○ DFINITY cannot access most nodes

● Self governing
○ No single person in control of the IC
○ Votes to apply changes

Internet Computer

ICP

IP / Internet

Data Centers

Canister Smart Contracts

Users interact directly with Canisters: raw calls

Query call (r/o): ~20ms

Update call (r/w): ~2s

✉

✉

Developers and users interact directly with Canisters

Example apps
Discover

https://dfinity.org/showcase/
https://dscvr.one/

State Machine Replication (SMR)

Nodes must have same state

1. State on all nodes is identical
2. Deterministic state transitions
3. Ordered input

→ State still the same after executing inputs

IC state:

● Canister code, data and queues
● System state

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Each subnet runs instance of SMR

Each subnet hosts a subnet of canisters

Communication across subnets
possible

ICP Layers

Message Routing

Execution Environment

Consensus

Networking

Deterministic computation

Message acquisition and ordering

DFINITY Onboarding DeckExecution Environment

Hello World example app

● Canister code: wasm
○ Official support: Rust and Motoko

● Install: get canister ID
● Call via canister ID

○ Raw calls
○ HTTP calls

DFINITY Confidential: For Internal Use Only

App with state: Orthogonal persistence

■ Illusion: programs run forever

■ Program state (incl. heap) is persisted/restored automatically

DFINITY Confidential: For Internal Use Only

App with state: Orthogonal persistence

Sampel Defi

Note:
Programming is significantly simpler in
Motoko

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

DFINITY Confidential: For Internal Use Only

App with state: Orthogonal persistence

Sampel Defi

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

DFINITY Confidential: For Internal Use Only

App with state: Orthogonal persistence

Sampel Defi

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

DFINITY Confidential: For Internal Use Only

Challenge: Need to track changes to memory

Current solution (simplified): Map memory pages on demand

Example: Canister call

1. Initially: no page is mapped

2. Read access: page fault → map r/o, increase read counter

3. Write access: page fault → (re-)map r/w, increase write counter + remember page

a. Query call: throw away dirty pages

b. Update call: store changes in heap delta

Note: 95% of message executions change at most seven memory pages.

Orthogonal persistence: Track changes + accounting

DFINITY Confidential: For Internal Use Only

Orthogonal persistence: Performance

Naive solution quite slow.

● Can speculatively map multiple consecutive pages: → trade accuracy for speed
○ diff on speculatively mapped r/w pages

● Map r/w for query calls (we throw changes away anyway)

Future: might explore modifying the wasm runtime to compile in profiling instructions

DFINITY Confidential: For Internal Use Only

Multiple concurrent canister executions

Canister
A

Canister
B

Time

DFINITY Confidential: For Internal Use Only

Multiple concurrent canister executions

Canister
A

Canister
B

Time

Round R Round
R+1

New block with new
messages starts to be
processed

DFINITY Confidential: For Internal Use Only

Multiple concurrent canister executions

Canister
A

Canister
B

Canister
A

Canister
B

Time

Round R Round
R+1

Round
R+2

Canister A might suffer from Canister B

DFINITY Confidential: For Internal Use Only

Multiple concurrent canister executions

● Want block ~1s → Execution has to process messages in ~1s

● Limit number of instructions per message
a. But: Some messages take longer

■ E.g. canister upgrade, with expensive pre- and post-hooks
■ Garbage collection

Round R Round
R+1

Round
R+2

Canister
A

Canister
B

Canister
A

Canister
B

Time

a)

DFINITY Confidential: For Internal Use Only

Scheduling: time slicing

● Has to be deterministic
a. Load balancing etc. gets harder

● Reservations (compute allocations)
● Good resource usage

a. Fill with best-effort, fairness
● Intermediate state must not be observable

a. Atomicity: Roll-back on error + Isolation

Round
R+1

Round
R+2

Canister
A

Canister
B

Round
R+3

Round R

Canister
A

Canister
B

Canister
B

DFINITY Confidential: For Internal Use Only

Time slicing and checkpointing

● Checkpoint to disk every 500 rounds (~500s, ~8min)
● Contains all state required to resume computation

● Partially executed messages at checkpoint?
a. Nodes have be able to resume from checkpoints
b. What to do with incomplete message executions?

DFINITY Confidential: For Internal Use Only

Scheduling & time slicing

● Quite challenging
● Still ongoing discussion

● Come talk to us if you are interested in working on things like this

DFINITY Onboarding DeckSome numbers

The IC in Current Numbers

Network Layer:

● 477 nodes
○ From 54 node providers

● 33 subnets

https://dashboard.internetcomputer.org/

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Application Layer:

● 75K+ canisters
● > 2 Mio registered identities (~users)
● ~1.1TB total state (and counting…)

https://dashboard.internetcomputer.org/

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Consensus

● 850M+ blocks created
● ~34 blocks per second
● ~3500 messages per second

https://dashboard.internetcomputer.org/

https://dashboard.internetcomputer.org/

Energy consumption of the IC

● Blockchains have a bad reputation
○ Mostly due to proof of work

● We don’t do that
● We have random beacon and threshold cryptography

○ Single public key that can be used to verify responses from IC
○ Can throw away old state (don’t need to maintain forever)

Threshold Cryptography in a nutshell

Shamir’s polynomial of degree 4

https://www.researchgate.net/figure/Shamirs-polynomial-4-n-threshold-secret-sharing-scheme-a-Four-players-can_fig38_43493291

Energy consumption of the IC

● Peak power consumption of node machines: 700W
● Power usage effectiveness (PUE): 2.33 (extremely conservative)

○ A PUE of 1: all power is spent on compute
○ A PUE of 2: as much power for cooling etc as for compute
○ 2.33 is quite conservative (e.g. Google closer to 1.1)

● With PUE: 1631W per IC node

● Number of machines: 518 + 11 boundary nodes (as of weekend)
● Total max power consumption of all nodes: ~863kW

● ~3300 transactions / s → 261.45 Ws per transaction = 261.45 Joule
● Conservatice: hardware currently is underutilized

Energy consumption of the IC

● Peak power consumption of node machines: 700W
● Power usage effectiveness (PUE): 2.33 (extremely conservative)

○ A PUE of 1: all power is spent on compute
○ A PUE of 2: as much power for cooling etc as for compute
○ 2.33 is quite conservative (e.g. Google closer to 1.1)

● With PUE: 1631W per IC node

● Number of machines: 518 + 11 boundary nodes (as of weekend)
● Total max power consumption of all nodes: ~863kW

● ~3300 transactions / s → 261.45 Ws per transaction = 261.45 Joule
● Conservatice: hardware currently is underutilized

Solana Energy Usage Report

https://solana.com/news/solana-energy-usage-report-november-2021

Questions? Reach out to:
stefan.kaestle@dfinity.org
ulan.degenbaev@dfinity.org
adam.bratschikaye@dfinity.org

We are hiring: dfinity.org/careers

mailto:stefan.kaestle@dfinity.org
mailto:ulan.degenbaev@dfinity.org
mailto:adam.bratschikaye@dfinity.org

