o0

DFINITY

The Internet Computer for
Systems Researchers

ot
e e

Stefan Kaestle N 7//
Ulan Degenbaev, Adam Bratschi- Kfme Andynyﬁ\gﬁestovskyy

s \\
June 2022 We are hiring: dfinity.org/careers

What is the IC?
Interesting Systems problems

Numbers

Q&A

CO

DFINITY

What is the Internet Computer?

< <\
- (o @ﬁ E\

What is the Internet Computer?

Vision:
Platform to run any ¢ mputatio
in a decentralized and secyre %ner

What’s different about the Internet Computer

e Byzantine fault tolerance
o Up to f out of 3f + 1 malicious nodes
o Individual nodes cannot be trusted

Internet Computer

e Geo replicated
IP / Internet
e Decentralized reme
o DFINITY cannot access most nodes
Data Centers
e Self governing
o No single person in control of the IC L L
o Votes to apply changes R R lo'e

DFINITY

Canister Smart Contracts

Data: Memory pages

Code: WebAssembly bytecode

IIIIIII

Users interact directly with Canisters: raw calls

Internet Computer

Public cyberspace
(rlw): ~2s

CO

DFINITY

Developers and users interact directly with Canisters

Internet Computer

Example apps Public cyberspace

Discover

CO

DFINITY

https://dfinity.org/showcase/
https://dscvr.one/

State Machine Replication (SMR)

Nodes must have same state

1. State on all nodes is identical
2. Deterministic state transitions
3. Ordered input

— State still the same after executing inputs

IC state:

e Canister code, data and queues
e System state

DFINITY

Scalability: Nodes and Subnets

Nodes are partitioned into subnets
Each subnet runs instance of SMR
Each subnet hosts a subnet of canisters

Communication across subnets
possible

DFINITY

ICP Layers

@ Execution Environment

> Deterministic computation

Message Routing

J
\
Q Consensus
> Message acquisition and ordering
o%’f Networking
J

CO

DFINITY

Execution Environment

Hello World example app

#| query]
fn greet(name:

}

format!("Hello

e (Canister code: wasm
o Official support: Rust and Motoko

e |Install: get canister ID

e (Call via canister ID

o Raw calls
o HTTP calls

CO

DFINITY

App with state: Orthogonal persistence

m lllusion: programs run forever

m Program state (incl. heap) is persisted/restored automatically

DFINITY Confidential: For Internal Use Only DFINITY

App with state: Orthogonal persistence

State::default());

#[derive(Default)

pub struct State

Note:
Programming is significantly simpler in

Sampel Defi Motoko

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

App with state: Orthogonal persistence

#[query(name = "getBalance")]
#|candid method(query, rename = "getBalanc:
pub fn get balance(token canister 1id: Principal) -> Nat {

with(]|s]| s.borrow().excﬁange.get_balance(token_canister_id))

}

Sampel Defi

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

App with state: Orthogonal persistence

#[update]

#[candid _method(update)]

pub async fn deposit(token _canister_id: Principal) -> DepositReceipt
let caller = caller();

with(]|s| {
s.borrow _mut()
.exchange
.balances
.add_balance(&caller, &token canister_id, amount.to owned())

Receipt: :0k(amount)

Sampel Defi

DFINITY Confidential: For Internal Use Only DFINITY

https://github.com/dfinity/examples/blob/403c5f8291bd5c3bceb41c9affdd6d227c6683ca/rust/defi/src/defi_dapp/lib.rs

Orthogonal persistence: Track changes + accounting

Challenge: Need to track changes to memory
Current solution (simplified): Map memory pages on demand
Example: Canister call

1. Initially: no page is mapped

2. Read access: page fault — map r/o, increase read counter

3. Write access: page fault — (re-)map r/w, increase write counter + remember page
a. Query call: throw away dirty pages

b. Update call: store changes in heap delta

Note: 95% of message executions change at most seven memory pages.

DFINITY Confidential: For Internal Use Only

DFINITY

Orthogonal persistence: Performance

Naive solution quite slow.

e Can speculatively map multiple consecutive pages: — trade accuracy for speed
o diff on speculatively mapped r/w pages
e Map r/w for query calls (we throw changes away anyway)

Future: might explore modifying the wasm runtime to compile in profiling instructions

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

Canister
7oy >

Canister
B >

> Time

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

New block with new
messages starts to be
processed

Round R

Canister
7oy >

Canister
B >

> Time

DFINITY Confidential: For Internal Use Only DFINITY

Multiple concurrent canister executions

Round R Round Round
R+1 R+2
Canister Canister
oy P e yiy >
Canister Canister

Canister A might suffer from Canister B

DFINITY Confidential: For Internal Use Only

* Time

DFINITY

Multiple concurrent canister executions

e Want block ~1s — Execution has to process messages in ~1s

Round R Round Round
R+1 R+2
Canister Canister
oy P e yiy >
a)
Canister Canister

> Time

e Limit number of instructions per message
a. But: Some messages take longer
m E.g. canister upgrade, with expensive pre- and post-hooks
m Garbage collection

DFINITY Confidential: For Internal Use Only

DFINITY

Scheduling: time slicing

Round R

Round Round Round
R#1 Rk-2 R$3
Canister Canister
A A >
Canister Canister Canister
b . . b > """ b >

e Has to be deterministic
Load balancing etc. gets harder

a.

e Reservations (compute allocations)
e (Good resource usage
Fill with best-effort, fairness
e Intermediate state must not be observable

Atomicity: Roll-back on error + Isolation

a.

a.

DFINITY Confidential: For Internal Use Only

DFINITY

Time slicing and checkpointing

e Checkpoint to disk every 500 rounds (~500s, ~8min)
e Contains all state required to resume computation

e Partially executed messages at checkpoint?
a. Nodes have be able to resume from checkpoints
b. What to do with incomplete message executions?

DFINITY Confidential: For Internal Use Only DFINITY

Scheduling & time slicing

e Quite challenging
e Still ongoing discussion

e Come talk to us if you are interested in working on things like this

DFINITY Confidential: For Internal Use Only DFINITY

Some numbers

The IC in Current Numbers

Network Laver:

e 477 nodes

o From 54 node providers
e 33 subnets

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Application Layer:

e /5K+ canisters
e > 2 Mio registered identities (~users)
e ~1.1TB total state (and counting...)

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

The IC in Current Numbers

Consensus

e 850M+ blocks created
e ~34 blocks per second
e -~3500 messages per second

https://dashboard.internetcomputer.org/ CO

DFINITY

https://dashboard.internetcomputer.org/

Energy consumption of the IC

e Blockchains have a bad reputation
o Mostly due to proof of work

e \We don’t do that

e \We have random beacon and threshold cryptography
o Single public key that can be used to verify responses from IC
o Can throw away old state (don’t need to maintain forever)

CO

DFINITY

Threshold Cryptography in a nutshell

(@) APX) (b) ‘AP(x)
\
\
\
3 I
; I
o 1
\ Sl M I
\ 7 \ !
\‘ = // \\ !
/’ N !
\ 4 \
B N 7 \)
Qi N >’ i
/' P ok S !
/ \ 7 \ ‘\\ \’
/ Ny =gt \ s 1]
»x P y T \\ \,I E~\.x
0/0 | 40{7 0/" \\ 006
7L / 2 /2 IV
G ! (SR (O / (SN
(74 ' 7 \) \\ ’ \ (¥4
7 \
] N \
I
DFINITY

Shamir’s polynomial of degree 4

https://www.researchgate.net/figure/Shamirs-polynomial-4-n-threshold-secret-sharing-scheme-a-Four-players-can_fig38_43493291

Energy consumption of the IC

Peak power consumption of node machines: 700W

e Power usage effectiveness (PUE): 2.33 (extremely conservative)
o A PUE of 1: all power is spent on compute
o A PUE of 2: as much power for cooling etc as for compute
o 2.33is quite conservative (e.g. Google closer to 1.1)

e With PUE: 1631W per IC node

e Number of machines: 518 + 11 boundary nodes (as of weekend)
e Total max power consumption of all nodes: ~863kW

e ~3300 transactions / s — 261.45 Ws per transaction = 261.45 Joule
e Conservatice: hardware currently is underutilized

DFINITY

Energy consumption of the IC

e ~3300 transactions / s — 261.45 Ws per transaction = 261.45 Joule
e Conservatice: hardware currently is underutilized

Solana Enerqgy Usage Report

Activity

A single Google Search

Keeping an LED light bulb on for one hour 2

Using a fully-charged iPhone 13 on battery 3

Working for an hour with a computer and monitor 4

One eth2 transaction ®

Watching an hour of television on a 40 inch+ LCD
Tv4

Playing one hour of a PlayStation 5 game ©

Running a refrigerator for one hour 4

One hour of central air conditioning *

Using one gallon of gasoline ”

One Ethereum transaction &

One Bitcoin transaction ©

Energy Used, in
Joules (J)

1,080J

36,000 J

44,676 J

46,800 J

126,000 J

540,000 J

708,840 J

810,000 J

12,600,000 J

121,320,000 J

692,820,000 J

6,995,592,000 J

https://solana.com/news/solana-energy-usage-report-november-2021

DFINITY
Questions? Reach
stefan.kaestle@dfinity.

uIan.deeLe%aev@dﬂnit\gc? /ﬁ\
am bratschikaye@dfinityorg _ (© >

NI

(/\ AWe are hiring: dfinity.org/c regs/
/\ g /’// k

mailto:stefan.kaestle@dfinity.org
mailto:ulan.degenbaev@dfinity.org
mailto:adam.bratschikaye@dfinity.org

